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Abstract – This paper describes the implementation of 
the Fast Fourier Transform (FFT) on the 
Reconfigurable Data Path Processor (RDPP) under 
development by the Institute of Advanced 
Microelectronics and NASA Goddard Space Flight 
Center. The RDPP implements a multi-stage 
computational pipeline, optimized for systolic signal 
processing applications. We implement the Goertzel 
FFT algorithm, which is able to exploit the data path 
parallelism of the RDPP. The paper introduces the 
RDPP and the Geortzel algorithm, describes a 
Fourier Transform Hyperspectral Image data 
conversion application, and discusses scaling issues. 
 
 

I. THE RECONFIGURABLE DATA PATH PROCESSOR 
 
The emerging field of Reconfigurable Computing seeks 
to achieve the performance of dedicated hardware with 
the flexibility of software through architectures that can 
be reconfigured at run time to optimize them for 
different computing tasks [5]. The Reconfigurable Data 
Path Processor (RDPP) is a reconfigurable 
multiprocessing chip being developed for high-
throughput, data-intensive processing tasks aboard 
spacecraft. The RDPP contains 16 reconfigurable 
processing elements, each with a multiplier, an 
arithmetic/logic unit, data path formatting logic, and data 
path selection logic, operating on a 24-bit-wide data 
path. In addition, there are five 24-bit bi-directional I/O 
ports. The RDPP implements a synchronous data flow 
computational model, optimized for data-intensive 
processing tasks such as signal processing [1]. The 
RDPP operates in two phases: (1) configuration, and (2) 
execution. In configuration, the processing elements are 
programmed for specific processing tasks, 
programmable interconnects are configured to form a 

processing pipeline, and a run-time program is loaded. In  
the execution phase, the RDPP reads and processes data 
from an input stream and writes to an output stream. 

 
F
p
p
T
P
si
se
e
o
 
T
p
fi
in
sy
h
d

 
T
in
D
e
it
se
 

IOM1PE4
τ=2τ=2τ=2τ=2

PE0
τ=2τ=2τ=2τ=2

PE3
τ=3τ=3τ=3τ=3

PE2
τ=2τ=2τ=2τ=2

PE1
τ=4τ=4τ=4τ=4

IOM0

Input

Output

IOM1PE4
τ=2τ=2τ=2τ=2

PE0
τ=2τ=2τ=2τ=2

PE3
τ=3τ=3τ=3τ=3

PE2
τ=2τ=2τ=2τ=2

PE1
τ=4τ=4τ=4τ=4

IOM0

Input

Output

Fig. 1: Example RDPP pipeline. 
ig. 1 illustrates a data pipeline implemented with five 
rocessing elements (PEs), an input port, and an output 
ort. τ represents the processing delay through a PE. 
his example has a processing fork at PE1, and a join at 
E4. Both the top and bottom forks execute 
multaneously. PE4 performs conditional data path 
lection on a clock-cycle basis, selecting the output of 

ither PE2 or PE3, as appropriate, to pass on to the 
utput port.  

he data flow model is very efficient for many signal 
rocessing tasks, such as finite impulse response (FIR) 
lters, which accept data sequentially, but internally are 
herently parallel, and so are naturally suited to a 
stolic pipeline. The Fast Fourier Transform does not 

ave these properties, and implementing it in a pipelined 
ata path processor presents a special set of challenges. 

II. THE FAST FOURIER TRANSFORM 

he Discrete Fourier Transform (DFT) is widely used in 
strument data processing. The ability to execute the 
FT quickly in an embedded system would greatly 

nhance its usefulness in spacecraft data processing. In 
s direct form, the Discrete Fourier Transform of a data 
quence of length N is computed by: 
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where n is a time sample, k is a frequency bin, and 
Nj

N eW /2π−= , n=0,1,…N-1, k=0, 1,…N-1. {x[n]} is 
the set of input data samples, and {X[k]} is the set of 
complex-valued Fourier coefficient, i.e., the transform. 
Direct computation of the DFT on a sequence of length 
N requires )( 2NΟ complex multiplies and additions. 
Each complex multiply requires four real multiplies and 
three additions; a complex multiply-accumulate (MAC) 
is about four times as costly as a real-valued MAC. 
 
The famous Cooley-Tukey Fast Fourier Transform 
(FFT) algorithm employs a divide-and-conquer approach 
to computing the DFT. It minimizes the number of 
multiply-accumulate operations, enabling the DFT to be 
computed with )log( NNΟ complex MACs. The 
Cooley-Tukey algorithm computes the FFT on an entire 
block of data; the number of data points must be a 
composite number, i.e., mN 2= , where m is an integer. 
(If the number of samples is not a composite number, it 
must be “padded”, or extended to a composite number.) 
This approach dramatically reduces the number of 
arithmetic operations, and is admirably suited to 
execution on random-access, sequential machines 
including Digital Signal Processors (DSPs). It requires 
complex data shuffling, however, and the entire 
sequence must be available at once, which makes it 
difficult to parallelize. Fig. 2 shows a data flow diagram 
for the Cooley-Tukey algorithm. 
 

III. The Geortzel Algorithm 

 
Another approach to computing the FFT is the Goertzel 
algorithm, which offers some advantages for 
computation on a pipelined machine. The Goertzel 
algorithm formulates the DFT as a recursive filter, 
computing the Fourier coefficient in the individual 
frequency bins independently. It does not require 

simultaneous access to the entire signal array, but can 
accept the input signal samples sequentially.  
 
Table 1 summarizes the important differences between 
the two approaches. 
 
Cooley-Tukey Goertzel 

)log( NNΟ complex 
multiply-accumulates. 

O(N2) real multiply-
accumulates. 

Block computation. Point computation. 
N must be a composite 
number (N=2m). 

N is arbitrary. 

Butterfly network. Small recursive loop. 
Complex, multi-step data 
dependencies. 

Coefficients computed 
independently. 

Difficult to parallelize. Easy to parallelize. 
 
 
To develop the Goertzel algorithm, we observe that 

1=−kN
NW . With this, we can rewrite (1) as  
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This has the form of a convolution of the input sequence 
with the sequence 0, ≥− nW kn

N , which defines a digital 
filter with the transfer function: 
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which is easily implemented as a one-pole recursive 
filter with complex coefficients. This requires N complex 
multiply-accumulates, or 4N real MACs, for each point 
in the transform that we compute. To compute the 
complete the transform, we need 2N complex multiply-
accumulates.  
 
We can replace the complex MACs with real-valued 
operations by replacing the complex-valued one-pole 
filter with a two-pole recursive filter with real 
coefficients, one of which is –1. We define an 
intermediate variable vk[n]: 
 

)2()1()/2cos(2][][ −−−+= nvnvnknxnv kkk π  (4) 
 

for 10 −≤≤ Nn . If we require a complex-valued result, 
then we compute the final result with a single complex 
multiply and a subtraction after running the real-valued 
filter for N iterations: 
 

]1[][][ −−= NvWNvkX k
k
Nk    (5) 

 
If, on the other hand, we only need the magnitude of the 
transform, then we merely stop after N iterations of the 
filter, and ]1[][|][| −−= NvNvkX kk . Fig. 3 below 
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Fig. 2: Flow diagram for Cooley-Tukey FFT. ti are 
time steps. 



 

 

shows the data flow diagram for the Goertzel algorithm. 
A more detailed development is found in [2]. 

IV. THE FOURIER TRANSFORM HYPERSPECTRAL IMAGER 
EXAMPLE 

 
We now examine the Goertzel algorithm running the 
RDPP for a Fourier Transform Hyperspectral Imager 
(FTHSI). The system used in this study is the Hypercam 
airborne imager developed by Kestrel Corporation. The 
specifications are essentially identical to those flown in 
the FTHSI aboard the Air Force Mighty Sat II.1 satellite 
[3,4]. This is a push-broom system which images a 
single line through a Sagnac interferometer. The 
interferometer converts a one-dimensional line of data to 
a two-dimensional image: the horizontal dimension 
represents the spatial extent of the image (pixels), and 
the vertical dimension is the Fourier transform of the 
spectral intensity. The image is captured by a focal plane 
array and digitized. In order to form a spectral image, we 
must take the magnitude of the Inverse Discrete Fourier 
Transform (IDFT) of each column. (The computation of 
Inverse DFT is identical to the forward transform, except 
that k

NW in (1) is replaced by k
NW − ). 

 
The system records a single interferogram in 512 pixels. 
Before taking the IDFT, the interferogram is appodized 
and cropped to 256 pixels. By a well-known property of 
the IDFT of a real-valued sequence, the resulting 
spectrum is symmetrical, with the right half a mirror 
image of the left half. Thus, only 128 pixels of actual 
transform data are required.  
 
The RDPP requires two processing elements (PEs) to 
compute one Fourier magnitude coefficient using the 
Goertzel algorithm. Since the RDPP has 16 PEs, we can 
compute up to 8 Fourier coefficients in parallel, on one 
pass through the data. All of the PE pairs require the 
same data input, so only one of the RDPP’s 5 bi-
directional I/O ports is required for input data.  
 

The procedure compute the Goertzel FFT with a single 
RDPP is: 

1. Configuration: configure 8 recursive filters. 
Load each of the filters with the filter 
coefficient, 2cos(πk/64), corresponding to this 
frequency bin, k.  

2. Execution: Feed the input sequence into the 
RDPP, running the RDPP 128 times. 

3. Termination. Halt the RDPP and read out each 
of the 8 results. 

 
We repeat this process 15 more times, each time loading 
a different set of filter coefficients for the new values of 
k. The processing speed of an RDPP PE is not yet 
known. However, if we assume that one iteration 
through the filter requires 50 ns, then we can compute 8 
FFT samples in 6.4 µsec, plus configuration and read-out 
time, or an entire sequence of 128 samples in about 200 
milliseconds. If high speed is essential, we can assemble 
a bank of up to 16 RDPP chips in parallel, and compute 
the entire 128-sample FFT in tens of microseconds. 
 
Recall that the RDPP implements a 24-bit-wide, fixed-
point data path, with data-path-formatting elements 
incorporated into each processing element. The Kestrel 
FTHSI digitizes the signal to only 12 bits, but for this 
analysis we will assume the more challenging case of 16 
bit data. To compute each Discrete Fourier component, 
we need to run the filter 128 times. We scale the filter 
coefficients, )/2cos(2 Nkπ , to be less than 1; this 
guarantees the stability of our filter. We choose a format 
so that there is 1 sign bit and 16 fraction bits, leaving 7 
integer bits, which are all zero. 
 
Each 24-bit multiply produces a 48-bit product, which is 
then scaled back to 24 bits. Each addition has the 
potential to generate a carry out of the fraction field, and 
add 1 to the integer field. In the worst case, after 
processing 128 samples, the integer field can hold a 
value of up to 127, which fits in the 7 bit integer field 
without overflow. Fig. 4 shows the structure of the filter 
loop for the FTHSI application. 

 

Z-1

Z-1)/2cos(2 Nkπ

)(nx )(nvk ky

-1

-1

128 iterations of 
recursive filter loop

Subtract last two 
samples

Z-1Z-1

Z-1Z-1)/2cos(2 Nkπ )/2cos(2 Nkπ

)(nx )(nx )(nvk )(nvk kyky

-1

-1

128 iterations of 
recursive filter loop

Subtract last two 
samples

Fig. 4: Filter structure for the FTHSI. 
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Fig. 3: Goertzel DFT data flow. 



 

 

V. CONCLUSION 
Reconfigurable computing based on reconfigurable 
systolic pipelines can significantly speed up many signal 
processing applications. The familiar Cooley-Tukey 
form of the FFT requires only )log( NNΟ complex 
multiply-accumulate operations, but because of its 
block-structured nature and intricate interconnect 
patterns, does not map well onto a systolic array. The 
Goertzel FFT algorithm can be formulated as a bank of 
recursive filters, which map neatly onto a data flow 
architecture, requiring )( 2NΟ real-valued multiply-
accumulates.  
 
Implemented on the 24-bit Reconfigurable Data Path 
Processor,  Geortzel algorithm will enable Fourier 
Transform Hyperspectral Imager data conversion on an 
instrument such as the Kestrel Hypercam, processing a 
16-bit data stream without numerical error due to 
overflow. By ganging 16 RDPP processor chips in 
parallel, the FTHSI data conversion can be completed in 
a few tens of microseconds. 
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